Problem 3

If $u_{1}(x, y)$ and $u_{2}(x, y)$ satisfy equation (1.1), then is it true that the sum satisfies it?; if yes, prove it.
[This is bad punctuation. Take out the semicolon and capitalize the first letter of "if."]

Solution

Equation (1.1) in the textbook is the general form of a second-order linear PDE with two independent variables.

$$
\begin{equation*}
A u_{x x}+B u_{x y}+C u_{y y}+D u_{x}+E u_{y}+F u=G \tag{1.1}
\end{equation*}
$$

Suppose that $u_{1}(x, y)$ and $u_{2}(x, y)$ are solutions to this equation.

$$
\begin{aligned}
& A \frac{\partial^{2} u_{1}}{\partial x^{2}}+B \frac{\partial^{2} u_{1}}{\partial x \partial y}+C \frac{\partial^{2} u_{1}}{\partial y^{2}}+D \frac{\partial u_{1}}{\partial x}+E \frac{\partial u_{1}}{\partial y}+F u_{1}=G \\
& A \frac{\partial^{2} u_{2}}{\partial x^{2}}+B \frac{\partial^{2} u_{2}}{\partial x \partial y}+C \frac{\partial^{2} u_{2}}{\partial y^{2}}+D \frac{\partial u_{2}}{\partial x}+E \frac{\partial u_{2}}{\partial y}+F u_{2}=G
\end{aligned}
$$

Add the respective sides of this equation.

$$
\begin{aligned}
& A\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}+\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)+B\left(\frac{\partial^{2} u_{1}}{\partial x \partial y}+\frac{\partial^{2} u_{2}}{\partial x \partial y}\right)+C\left(\frac{\partial^{2} u_{1}}{\partial y^{2}}+\frac{\partial^{2} u_{2}}{\partial y^{2}}\right) \\
&+D\left(\frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial x}\right)+E\left(\frac{\partial u_{1}}{\partial y}+\frac{\partial u_{2}}{\partial y}\right)+F\left(u_{1}+u_{2}\right)=2 G
\end{aligned}
$$

Use the fact that the derivative is a linear operator.
$A \frac{\partial^{2}}{\partial x^{2}}\left(u_{1}+u_{2}\right)+B \frac{\partial^{2}}{\partial x \partial y}\left(u_{1}+u_{2}\right)+C \frac{\partial^{2}}{\partial y^{2}}\left(u_{1}+u_{2}\right)+D \frac{\partial}{\partial x}\left(u_{1}+u_{2}\right)+E \frac{\partial}{\partial y}\left(u_{1}+u_{2}\right)+F\left(u_{1}+u_{2}\right)=2 G$
Because the right side is $2 G$ and not G, the sum of $u_{1}(x, y)$ and $u_{2}(x, y)$ does not satisfy equation (1.1).

